El sistema circulatorio,
la 'tubería' vital
(1/4)

El sistema circulatorio distribuye la sangre a todo el organismo, y el corazón es el músculo más importante

Por Ana Cecilia Becerril*

Tal como el agua que tomamos a diario se distribuye a través de una extensa red de tuberias hasta llegar a nuestras casas y servirnos de alimento, de similar manera la sangre fluye por el cuerpo mediante una intrincada red de tuberías.

Nuestro organismo, que está compuesto por millones de células, necesita para su normal funcionamiento oxígeno y sustancias generadoras de energía. Estos elementos vitales se encuentran en la sangre, y es el aparato circulatorio el encargado de realizar su distribución por todo el organismo. Es decir, es un sistema de bombeo continuo en circuito cerrado, formado por un motor, que es el corazón; los conductos o vasos sanguíneos, que son las arterias, venas y capilares; y el fluido que transita por ellos, la sangre.

Además de transportar los elementos nutritivos, este centro de distribución cumple otras funciones primordiales, como el transporte de algunas hormonas, la eliminación de los productos finales del metabolismo y la regulación de la temperatura.

Músculo fundamental de la vida: el corazón

El corazón se puede comparar con un trabajador incansable, que día y noche bombea el líquido que nos mantiene vivos: la sangre. Se calcula que el corazón late a un promedio de 70 veces por minuto en estado de reposo. Tiene forma de pera, mide 12,5 centímetros de longitud y pesa aproximadamente 450 gramos.

Este poderosísimo órgano se encuentra situado en el interior del tórax, entre ambos pulmones. Está formado por un músculo hueco llamado miocardio, el que a su vez se recubre en el lado interno y externo por el endocardio y el pericardio, respectivamente. 

Posee cuatro cavidades: dos superiores, llamadas aurículas, y dos inferiores, los ventrículos. Estas cavidades están separadas por tres tipos de tabiques: el interauricular, que divide las aurículas; el interventricular, que divide los ventrículos, y el auriculoventricular, que separa las aurículas de los ventrículos.

Ahora que ya sabemos cómo está formado nuestro corazón, te habrás preguntado cómo se comunican sus cavidades, si aparentemente hay tabiques que las separan. Pues bien, te lo vamos a explicar: la aurícula derecha comunica con el ventrículo derecho por un orificio llamado auriculoventricular derecho. En los bordes de este agujero se sitúa la válvula tricúspide.

La aurícula izquierda hace lo mismo con el ventrículo izquierdo a través del orificio auriculoventricular izquierdo, en cuyos contornos se encuentra la válvula mitral o bicúspide.

Estas válvulas son sumamente importantes, por cuanto dejan pasar la sangre desde las aurículas hacia los ventrículos, pero impiden el paso en sentido contrario.

Otras dos válvulas, denominadas pulmonar y aórtica, evitan que la sangre que está en las arterias refluya hacia los ventrículos. 

Cómo trabaja nuestro corazón

La principal acción que ejecuta nuestro corazón es la contracción, por lo que existen en él unos centros nerviosos -de células altamente especializadas- capaces de provocar impulsos rítmicos que ocasionan el latido cardíaco. Este sistema está formado por cuatro estructuras, que son: el nódulo sinoauricular, el nódulo auriculoventricular, el fascículo auriculoventricular de His y las fibras de Purkinje.

La conducción de los impulsos en el corazón, en estado normal, se inicia en el nódulo sinoauricular y se propaga a través del fascículo de His por las fibras de Purkinje, desde donde llega a los músculos papilares y las paredes ventriculares, donde tiene lugar el estímulo contráctil.

La actividad del corazón consiste en la alternancia sucesiva de un movimiento de contracción, llamado sístole, y uno de relajación, denominado diástole, de las paredes musculares de aurículas y ventrículos. Este proceso se puede resumir en los siguientes etapas:

  1. La aurícula se encuentra en diástole (relajación) y recibe la sangre que viene por las venas hasta llenarse.

  2. Se produce la sístole (contracción) auricular que envía la sangre al ventrículo a través del orificio auriculoventricular. Esta contracción no es muy enérgica, porque la sangre pasa al ventrículo, que está muy cerca.

  3. Una vez lleno el ventrículo, se contrae a su vez. Esta sístole (contracción) impulsa la sangre hacia la arteria, cuyas válvulas están abiertas. La sangre no puede retroceder a la aurícula porque las válvulas aurículo-ventriculares se cierran. Esta contracción es muy enérgica, porque el ventrículo izquierdo debe impulsar la sangre a todo el cuerpo. 

  4. Una vez en la arteria, la sangre no puede retroceder al ventrículo, porque se cierran las válvulas sigmoideas.

  5. Terminada la sístole ventricular, se inicia la diástole (relajación) general del corazón.

El ciclo completo -que tiene una duración aproximada a los 0.8 segundos- se puede dividir, en términos generales, en tres períodos. El primero, donde se contraen las aurículas; el segundo, donde se produce la contracción de los ventrículos; y el tercero, en que tanto las aurículas como los ventrículos permanecen en reposo.

La sangre está contenida en el cuerpo en cantidad de unos 5 a 6 litros. Se encuentra compuesta por una parte líquida y una sólida, que son las células sanguíneas.

Se calcula que en un milímetro de sangre hay de cuatro a cinco millones de hematíes o glóbulos rojos; de 6 mil quinientos a 7 mil leucocitos o glóbulos blancos, y de 200 a 300 mil plaquetas o trombocitos.

Cada célula tiene sus propias necesidades de alimento y energía, que han de ser satisfechas por un sistema de abastecimiento común. Las células precisan de oxígeno y alimento, proporcionados por la sangre, que tiene que llegar a cada parte del cuerpo a la presión adecuada, ya que si es muy baja estos nutrientes no podrán llegar a su destino, y si es muy alta se corre el riesgo incluso de dañar a las células que debe nutrir.

La presión arterial es un índice de diagnóstico importante, en especial de la función circulatoria. El corazón puede impulsar hacia las grandes arterias un volumen de sangre mayor que el que las pequeñas arteriolas y capilares pueden absorber. Es por esto que cualquier trastorno que dilate o contraiga los vasos sanguíneos, afecte su elasticidad o interfiera con la función de bombeo, afecta a la presión sanguínea.

En las personas sanas, la presión arterial normal se suele mantener dentro de un margen determinado, que se calcula en base a dos valores: el punto máximo en que el corazón se contrae para vaciar su sangre en la circulación (sístole), y el punto mínimo en que el corazón se relaja para llenarse con la sangre que regresa de la circulación (diástole).

La presión se mide en milímetros de mercurio, con la ayuda de un instrumento denominado esfigmomanómetro.

A pesar de que actualmente existen máquinas digitales que detectan fácilmente la presión sanguínea, todavía se sigue utilizando mayoritariamente el esfigmomanómetro. Este es un aparato que consta de un manguito de goma inflable conectado a un dispositivo que detecta la presión con un marcador. Con el manguito se rodea el brazo izquierdo y se insufla apretando una pera de goma conectada a éste por un tubo. Mientras, la persona que evalúa la presión ausculta con un estetoscopio aplicado sobre una arteria en el antebrazo. A medida que el manguito se expande, se comprime la arteria de forma gradual. El punto en que el manguito interrumpe la circulación y las pulsaciones no son audibles determina la presión sistólica o presión máxima. Sin embargo, su lectura habitual se realiza cuando al desinflarlo lentamente la circulación se restablece. Entonces es posible escuchar un sonido enérgico a medida que la contracción cardíaca impulsa la sangre a través de las arterias.

Después se permite que el manguito se desinfle gradualmente, hasta que de nuevo el sonido del flujo sanguíneo desaparece. La lectura en este punto determina la presión diastólica o presión mínima, que se produce durante la relajación del corazón.

En las personas sanas la tensión varía desde 80/40 en lactantes, 120/80 a los 30 años y hasta 140/85 a los 40 años o más. Cuando la presión sistólica se eleva por sobre los 140 milímetros de mercurio y la diastólica sobre los 90, se habla de hipertensión arterial.

segunda parte

  *Dra. Ana Cecilia Becerril Sánchez Aldana
Médicina General y Medicina Estética
curriculum

En esta sección:

Sitio elaborado en colaboración con mca.virtual, s.a. de c.v.
México, 1999-2000

arriba